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Abstract How growth, mortality, and dispersal in a species affect the species’ spread
and persistence constitutes a central problem in spatial ecology. We propose impul-
sive reaction–diffusion equation models for species with distinct reproductive and
dispersal stages. These models can describe a seasonal birth pulse plus nonlinear
mortality and dispersal throughout the year. Alternatively, they can describe seasonal
harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year.
The population dynamics in the seasonal pulse is described by a discrete map that
gives the density of the population at the end of a pulse as a possibly nonmonotone
function of the density of the population at the beginning of the pulse. The dynam-
ics in the dispersal stage is governed by a nonlinear reaction–diffusion equation in a
bounded or unbounded domain. We develop a spatially explicit theoretical framework
that links species vital rates (mortality or fecundity) and dispersal characteristics with
species’ spreading speeds, traveling wave speeds, as well as minimal domain size for
species persistence. We provide an explicit formula for the spreading speed in terms
of model parameters, and show that the spreading speed can be characterized as the
slowest speed of a class of traveling wave solutions. We also give an explicit formula
for the minimal domain size using model parameters. Our results show how the dif-
fusion coefficient, and the combination of discrete- and continuous-time growth and
mortality determine the spread and persistence dynamics of the population in a wide
variety of ecological scenarios. Numerical simulations are presented to demonstrate
the theoretical results.
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1 Introduction

Mathematical models have long been central to the development of spatial theory in
ecology (e.g., Murray 2002a, 2002b; Okubo and Levin 2001; Tilman and Kareiva
1997; Shigesada and Kawasaki 1997; Skellam 1951; Cantrell and Cosner 2003).
A large portion of the mathematical literature on spread and persistence is couched
in terms of reaction–diffusion equations, which often yield appealingly tractable and
compact models of spread and persistence. Reaction–diffusion equations assume that
dispersal is governed by random diffusion and that dispersal and growth take place
continuously in time and space. They have had remarkable success in explaining the
rates at which species have invaded large open environments as well as spatial pat-
terns that species have had established in bounded-patch habitats. It has been well
documented that the spatial theory about species spread and persistence matches the
field observations well in a number of cases (Murray 2002a, 2002b; Shigesada and
Kawasaki 1997, and Cantrell and Cosner 2003).

Many species such as fishes or large mammal populations exhibit what Gaughley
termed a birth pulse growth pattern (Caswell 2001). That is, reproduction takes place
in a relatively short period each year. In between these pulses of growth, mortality
takes its toll, and the population decreases. The population dynamics consist of a
within-season stage and a between-season stage. Within a season, population mor-
tality is continuous while between seasons population growth is discrete. Models in-
corporating both discrete and continuous components are referred to as semidiscrete
models (Singh and Nisbet 2007, Pachepsky et al. 2008). There have been extensive
studies regarding the dynamics of nonspatial semidiscrete models in the form of im-
pulsive ordinary differential equations; see, for example, Eskola and Geritz (2007),
Geritz and Kisdi (2004), Eskola and Parvinen (2007), Pachepsky et al. (2008), Gyl-
lenberg et al. (1997), Thieme (2003), Brauer and Castillo-Chávez (2001). The results
given by these authors show that various discrete-time population models can be de-
rived mechanistically just by altering the patterns of reproduction and interaction.
These models include classical examples such as the Ricker model (Ricker 1954),
the Beverton and Holt model (Beverton and Holt 1957), the Skellam model (Skellam
1951), and others, which generate equilibrium dynamics, limit cycles, and sometimes
chaos. When population dynamics contain growth and dispersal, as well as continu-
ous and discrete components, classical reaction–diffusion equations are not suitable
to describe spread and persistence of the population, and impulsive reaction–diffusion
equations (hybrid dynamical systems) provide a natural description of the spatial dy-
namics of the population.

In this paper, we propose simple impulsive reaction–diffusion equation models
to study persistence and spread of species with a reproductive stage and a dispersal
stage in bounded and unbounded domains. It is assumed that in a reproductive stage
pulse growth occurs, and in a dispersal stage movement and mortality take place. The
formulations of the models consist of discrete maps and nonlinear reaction–diffusion
equations. The discrete maps describe pulse growth, which are allowed to be non-
monotone (i.e., there may be overcompensation in population growth). We also dis-
cuss how the model can be extended to the case of impulsive harvesting in a contin-
uously growing and dispersing population.
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We shall address two fundamental questions for the models: What are the spread-
ing speed and traveling wave speeds when a population invades an unbounded do-
main? and what is the minimal domain size in which the population can persist when
the spatial domain is bounded and has a lethal exterior? We demonstrate that, al-
though the underlying dynamics of the models can be complicated, explicit analyti-
cal solutions to the questions can be given. We particularly show that when a species
spreads into an unbounded domain, there is a spreading speed that can be formulated
in terms of species vital rates (survival, fecundity, or development rates) and dispersal
characteristics, and the spreading speed can be characterized as the slowest speed of
a class of traveling wave solutions. Loosely speaking, the spreading speed describes
the asymptotic rate at which a species initially concentrated in a finite region, will
expand its spatial range. A traveling wave solution describes the propagation of a
species as a wave with a fixed shape and a fixed speed. The spreading speeds and
traveling wave solutions provide important insight into the spatial patterns and rates
of invading species in space. In the case that the spatial domain of a population is
bounded with a lethal exterior, we prove the existence of a minimal domain size that
can be determined explicitly by the same set of model parameters used for computing
the spreading speed. We present simulations for the models. We observe that the nu-
merical solutions for the unbounded domain case can exhibit oscillations, and that the
numerical solutions for the bounded domain case can have different spatial patterns
of species distributions.

This paper is organized as follows. In the next section, we present an impul-
sive reaction–diffusion model with an unbounded domain, establish the existence of
spreading speed and traveling wave solutions for the model, and provide a formula for
the spreading speed. In Sect. 3, we provide an impulsive reaction–diffusion model in
a bounded domain that has a lethal exterior, and determine the minimal domain size.
Section 4 is about simulations for the models. Section 5 includes some concluding
remarks and discussions. Appendix contains a justification of nonlinearity of a repro-
duction function in the models and proofs of several theorems.

2 Spread in an Unbounded Domain

2.1 Model Formulation

We consider a population with two development stages: a reproductive stage and a
dispersal stage. In a reproductive stage, population growth occurs impulsively via a
discrete-time map. We use g to describe the population density at the end of a repro-
ductive stage as a function of the population density at the beginning of the stage.
The population diffuses with a diffusion coefficient d (d > 0) and dies continuously
in a dispersal stage. For simplicity, we assume that a dispersal stage occurs for time
t ∈ [0,1]. In a dispersal stage, α (α < 0) denotes the death rate of the population due
to the interaction of the population with the environment, and the interspecific com-
petition between individuals follows the mass action law and γ is used to describe
the effect of competition. Let Nn(x) denote the density of the population at point x at
the beginning of the reproductive stage in the nth year. Then the mathematical model
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that describes the spatial dynamics of the population in a one-dimensional unbounded
space is given by

∂u

∂t
= d

∂u

∂x2
+ αu − γ u2, −∞ < x < ∞,

u(x,0) = g
(
Nn(x)

)
,

Nn+1(x) = u(x,1).

(1)

In this model, reproduction occurs only once a year, as with many mammal species
or the spawning season for many fish species. Outside a production season mortality
takes its toll, and the population decreases and diffuses continuously in time.

Model (1) can be also used to study the case that impulsive harvesting occurs
periodically in a continuously growing and dispersing population. For such a case,
we assume that α (α > 0) is the intrinsic growth rate of the population, and 0 <

g(N)/N < 1 so that 1 − g(N)/N represents the harvesting rate. Alternatively, it can
be employed to describe the situation that outside the winter the population dynamics
is governed by a reaction–diffusion equation, and during the winter the population
stops reproducing and moving, and the population of the following season is recruited
from the individuals that survive the winter.

We shall make the following assumptions on the model.

Hypothesis 2.1

i. α is a real number, and γ is a positive number.
ii. g(N) is a continuous function for N ≥ 0, g(0) = 0, g′(0) > 0, g(N) > 0 for

N > 0, and g(N)/N is nonincreasing for N > 0.

In the simplest case, g(N) = kN where k > 0 is a constant. If α > 0 and
g(N) = N , model (1) is essentially the classical Fisher equation studied by Fisher
(1937) and Kolmogorov et al. (1937). The reproductive process can be complicated
by interactions between individuals, and g(N) may be nonlinear. A nonlinear g can
be derived in the context of competition for breeding sites and Poisson distributing of
individuals in space; see Appendix 6.2 for a justification. Another approach involves
the assumption that, in a reproductive stage, individuals are sessile, and new born
juveniles are also immobile for some period of time. The results in Eskola and Geritz
(2007) show that g(N) is the Beverton–Holt function if there is competition between
reproductive adults in a reproductive stage, and g(N) is the Ricker function if adults
attack juveniles in a reproductive stage. Geritz and Kisdi (2004) derived these func-
tions based on a mechanistic underpinning involving resource consumption.

When α = γ = 0 and d > 0, the reaction–diffusion equation in (1) represents a
pure diffusion process. In this case, system (1) is equivalent to an integrodifference
equation where growth is determined by g and dispersal is governed by the normal
distribution (see Neubert et al. 1995). Integrodifference equations have been used
to study spread of species that have separate growth and dispersal stages; see, for
example, Diekmann (1978), Lui (1982), Weinberger (1982), Kot and Schaffer (1986),
Kot et al. (1996)), Neubert et al. (1995), Weinberger et al. (2002), and Li et al. (2005).
Here, complex non-Gaussian dispersal kernels can also play a role (e.g., Neubert et al.
1995, Kot et al. 1996).
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If d = 0, i.e., individuals do not diffuse, we use N̄n to denote the number of in-
dividuals at the beginning of the reproductive stage in the nth year. N̄n is described
by

du

dt
= αu − γ u2,

u(0) = g(N̄n),

N̄n+1 = u(1).

(2)

For α �= 0, one can solve this problem and find that

N̄n+1 = αg(N̄n)

(1 − e−α)γg(N̄n) + αe−α
. (3)

The limiting case of (3) as α → 0 is

N̄n+1 = g(N̄n)

γg(N̄n) + 1
(4)

which is the solution of (2) when α = 0.
Note that the right-hand sides of both (3) and (4) are compositions of the

Beverton–Holt function and g. Model (3) always has the trivial equilibrium 0. In the
case of α �= 0, a positive constant equilibrium of (1) or (3) is a root of the equilibrium
equation

αg(N)

(1 − e−α)γg(N) + αe−α
= N,

which is equivalent to

F
(
N,g(N)

) = 0 (5)

where

F
(
N,g(N)

) := (
1 − e−α

)
γN + αe−α N

g(N)
− α.

In the case of α > 0, since N/g(N) is nondecreasing for N > 0, F(N,g(N))

increases to ∞ as N → ∞. Consequently the above equation has a positive root if
and only if the limit of F(N,g(N)), as N approaches zero, is negative, that is,

g′(0)eα > 1. (6)

One can verify that (6) is also a necessary and sufficient condition for (5) to have a
positive root if α ≤ 0. We use β to denote the smallest of such roots when (6) holds.
Note that if (6) is not satisfied, then the solution N̄n of (2) satisfies

lim
n→∞ N̄n = 0. (7)

To understand the spatial dynamics of (1), we first consider the case where g is
monotone and then the case where g is nonmonotone.
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2.2 Monotone Case

We begin with the hypothesis

Hypothesis 2.2 g(N) is nondecreasing for N ≥ 0.

The condition (6) is necessary for the population described by (1) to grow and
spread in space. In fact, let Nn(x) be a solution of (1) with N0(x) bounded above by
a constant N̄0 < β . Then the comparison theorem for parabolic systems based on the
maximum principle (Protter and Weinberger 1985) shows that the solution Nn(x) of
(1) and the solution of N̄n of (2) satisfy Nn(x) ≤ N̄n. It follows from (7) that if (6) is
not satisfied, then Nn(x) approaches zero uniformly in x as n → ∞.

The following theorem shows that if (6) is satisfied, then model (1) has a positive
asymptotic spreading speed given in terms of model parameters, and the spreading
speed can be characterized as the slowest speed of a class of traveling wave solutions.

Theorem 2.1 Assume that Hypotheses 2.1–2.2, and the condition (6) are satisfied.
Then

c∗ := 2
√

d ln
(
g′(0)eα

)
(8)

is the spreading speed of system (1) in the following sense:
If the continuous initial function is zero outside a bounded interval, u0(x) �≡ 0,

and 0 ≤ u0(x) < β , then for any positive ε the solution of un of (1) has the following
properties:

i. lim
n→∞ sup

|x|≥n(c∗+ε)

Nn(x) = 0. (9)

ii. lim
n→∞ sup

|x|≤n(c∗−ε)

(
β − un(x)

) = 0. (10)

Furthermore, for c ≥ c∗, system (1) has a continuous nonincreasing traveling
wave wc(x − nc) with wc(−∞) = β and wc(+∞) = 0. A continuous nonnegative
traveling wave solution wc(x −nc) in (1) with wc(∞) = 0 and lim infx→−∞ wc(x) >

0 does not exist if c < c∗.

The properties (9) and (10) indicate that if Nn(x) is a solution of (1) with nonzero
initial data which vanish outside a bounded interval, then an observer who travels to
the left or right with speed greater than c∗ will eventually see Nn going to 0, while an
observer who travels with a speed below c∗ will eventually see Nn approaching β .

The formula (8) shows that the spreading speed of (1) is determined by d , g′(0),
and α, which are all linearization parameters. It is well defined if (6) is satisfied. In
the case of α > 0 and g′(0) = 1, c∗ = 2

√
dα. This is the well-known spreading speed

formula for the Fisher equation. Theorem 2.1 shows that c∗ is also the slowest speed
of traveling wave solutions connecting 0 with β .

2.3 Nonmonotone Case

To analyze the nonmonotone case, we require that the growth function is monotone
near N = 0 and so make the following hypothesis.
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Hypothesis 2.3 There is σ > 0 such that g(N) is nondecreasing for 0 ≤ N ≤ σ .

This hypothesis assumes that g(N) is nondecreasing near 0, which is weaker than
Hypothesis 2.2. It is satisfied by biological meaningful models with overcompensa-
tion in growth. For example, the Ricker function g(N) = Ner−bN is increasing for
0 < N < 1/b and decreasing for N > 1/b.

Define

g+(N) = max
0≤u≤N

g(u) (11)

for N ≥ 0. (This function is called G(u,0) in Thieme 1979.) It is easily seen that
g+(N) is nondecreasing for N ≥ 0, g+(N) ≥ g(N) for N ≥ 0, g+′

(0) = g′(0), and
g+(N) = g(N) for small positive N . The condition (6) ensures that the equilibrium
equation (5) with g replaced by g+ has a positive root. We use β+ to denote the
smallest of such roots. Clearly, β ≤ β+.

We next define

g−(N) = min
N≤u≤β+ g(u) (12)

for 0 ≤ N ≤ β+. (This function is called G(u,α) in Thieme 1979.) It is easily seen
that g−(N) is nondecreasing for N ≥ 0, g−(N) ≤ g(N) for N ≥ 0, g−′

(0) = g′(0),
and g−(N) = g(N) for small positive N . The condition (6) implies that the equilib-
rium equation (5) with g replaced by g− has a positive root. We use β− to denote the
smallest of such roots. It is easily seen that β ≥ β−.

We have that g± are nondecreasing functions,

g−(N) ≤ g(N) ≤ g+(N), g±′
(0) = g′(0), g±(N) ≤ g′(0)N,

and there is σ0 > 0 with σ0 < σ such that

g±(N) = g(N)

We have two auxiliary systems

∂u

∂t
= d

∂u

∂x2
+ αu − γ u2, −∞ < x < ∞,

u(x,0) = g+(
N+

n (x)
)
,

N+
n+1(x) = u(x,1),

(13)

and
∂u

∂t
= d

∂u

∂x2
+ αu − γ u2, −∞ < x < ∞,

u(x,0) = g−(
N−

n (x)
)
,

N−
n+1(x) = u(x,1).

(14)

The comparison theorem shows that if N+
n (x) is a solution of (13), N−

n (x) is a
solution of (14), and un(x) is a solution of (1), and if 0 ≤ u−

0 (x) ≤ u0(x) ≤ u+
0 (x) ≤

β+, then

0 ≤ u−
n (x) ≤ un(x) ≤ u+

n (x) ≤ β+ (15)
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for all n and x.
Note that (13) and (14) have the same linearized system, and thus have the same

spreading speed given by (8). The property (15) implies that c∗ given by (8) is also
the spreading speed for (1). Furthermore, c∗ represents the slowest speed of a class
of traveling wave solutions for (1).

Theorem 2.2 Assume that Hypotheses 2.1 and 2.3, and the condition (6) are sat-
isfied. Then c∗ given by (8) is the asymptotic spreading speed of system (1) in the
following sense:

If the continuous initial function u0(x) is zero outside a bounded interval,
u0(x) �≡ 0, and 0 ≤ u0(x) < β+, then for any positive ε the solution of un of (1)
has the following properties

i. lim
n→∞ sup

|x|≥n(c∗+ε)

Nn(x) = 0.

ii. lim
n→∞ inf|x|≤n(c∗−ε)

un(x) ≥ β−.

Furthermore, for c ≥ c∗, system (1) has a continuous traveling wave wc(x − nc)

with wc(∞) = 0 and lim infx→−∞ wc(x) ≥ β−. A continuous nonnegative traveling
wave solution wc(x − nc) in (1) with wc(∞) = 0 and lim infx→−∞ wc(x) > 0 does
not exist if c < c∗.

In the case that g(N) is a nonmonotone function such as the Ricker function, the
underlying dynamics of model (1) can be complicated. Theorem 2.2 shows that for
such a case the existence of traveling wave solutions can still be established. The
numerical simulations provided in Sect. 4 demonstrate that (1) can have oscillating
traveling waves if g(N) is the Ricker function.

3 Minimal Domain Size

3.1 Model Formulation

In this section, we consider the model

∂u

∂t
= d

∂u

∂x2
+ αu − γ u2, 0 < x < �,

u(0, t) = u(�, t) = 0,

u(x,0) = g
(
Nn(x)

)
,

Nn+1(x) = u(x,1).

(16)

Here, we have assumed that the spatial domain of the population is the interval [0, �]
with a lethal exterior. We are interested in the minimal domain size for which the
population can persist.



Waves and Domain Size in Impulsive Models 2391

3.2 Monotone Case

We first assume that Hypothesis 2.2 is satisfied so that g(N) is a nondecreasing func-
tion for N ≥ 0. In order to determine the minimal domain size we need the following
hypothesis

Hypothesis 3.1 There are positive numbers D, δ < σ , and ν > 1 such that g(N) ≥
g′(0)N − DNν for 0 ≤ N ≤ δ.

This assumption is satisfied by biologically reasonable growth functions.

Theorem 3.1 Assume that Hypotheses 2.1, 2.2, and 3.1, and the condition (6) are
satisfied. Then

�∗ := π

√
d

ln(g′(0)eα)
(17)

represents the minimal domain size for (16) in the following sense:

i. if � < �∗, then the solution Nn(x) of (16) satisfies

lim
n→∞Nn(x) = 0

for all x; and
ii. if � > �∗, then (16) has a minimal positive equilibrium N(x), and if N0(x) is

positive on an open subinterval of (0, �) then the solution sequence Nn(x) satisfies

lim inf
n→∞ Nn(x) ≥ N(x).

If g′(0)eα ≤ 1, the proof presented in Appendix 6.4 shows that the solution Nn(x)

satisfies limn→∞ Nn(x) = 0. It follows that if (6) is not satisfied, then the population
cannot persist in space no matter how big � is.

Observe that the minimal domain size �∗ for (16) is determined by the same set
of parameters used for computing the spreading speed c∗ for (1). It is interesting to
note that c∗�∗ = 2dπ . When d is fixed, increasing g′(0)eα will increase the spreading
speed but will decrease the minimal domain size.

3.3 Nonmonotone Case

We now assume that Hypothesis 2.3 is satisfied so that g(N) is a nondecreasing for
small N . We consider two auxiliary systems

∂u

∂t
= d

∂u

∂x2
+ αu − γ u2, 0 < x < �,

u(0, t) = u(�, t) = 0,

u(x,0) = g+(
N+

n (x)
)
,

N+
n+1(x) = u(x,1),

(18)
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and
∂u

∂t
= d

∂u

∂x2
+ αu − γ u2, 0 < x < �,

u(0, t) = u(�, t) = 0,

u(x,0) = g−(
N−

n (x)
)
,

N−
n+1(x) = u(x,1),

(19)

where g± are defined by (11) and (12). Recall that g−(N) ≤ g(N) ≤ g+(u) for u ≥
0. The comparison theorem shows that if N+

n (x) is a solution of (18), N−
n (x) is a

solution of (19), and un(x) is a solution of (16), and if 0 ≤ u−
0 (x) ≤ u0(x) ≤ u+

0 (x) ≤
β+, then

0 ≤ u−
n (x) ≤ un(x) ≤ u+

n (x) ≤ β+ (20)

for all n.
Observe that models (18) and (19) have the same minimal domain size given by

(17) according to Theorem 3.1. By using this and (20), we immediately obtain the
following theorem.

Theorem 3.2 Assume that Hypotheses 2.1, 2.3, and 3.1, and the condition (6) are
satisfied. Then

�∗ := π

√
d

ln(g′(0)eα)
.

represents the minimal domain size for (16) in the following sense:

i. if � < �∗, then the solution Nn(x) of (16) satisfies

lim
n→∞Nn(x) = 0

for all x; and

ii. if � > �∗, then (19) has a minimal positive equilibrium N(x), and if N0(x) is
positive on an open subinterval of (0, �) then the solution sequence Nn(x) of (16)
satisfies

lim inf
n→∞ Nn(x) ≥ N(x).

This theorem shows that when g(N) is nonmonotone, the minimal domain size for
(16) can still be completely determined. Our numerical simulations in Sect. 4 show
that different spatial patterns of solutions for (16) can be found when g(N) is the
Ricker function with different parameter values.

4 Numerical Simulations

In this section, we present some approximations to the solutions of models (1)
and (16). We first consider the case where g is the Beverton–Holt function

g(N) = mN/(a + N). (21)
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Fig. 1 A numerical approximation to the graph of Nn(x) for (1) with d = 1, α = −1, γ = 0.01, and g

given by (21) where m = 8 and a = 0.2. N0(x) is chosen to be a cosine function with a compact support
from −5 to 5. The left figure depicts the spread of the solution in two directions; and the right figure shows
the contour plots of the wave front

Clearly, g(N) is a monotone function for all N ≥ 0, g′(0) = m/a, and g(N) ≤
g′(0)N for all N ≥ 0. In this case, (6) becomes (m/a)eα > 1. This condition ensures
that model (1) has a positive equilibrium

β = α(m − ae−α)

mγ (1 − e−α) + αe−α
.

Theorem 2.1 shows that model (1) has a spreading speed given by (8) that is also the
slowest speed of nondecreasing traveling wave solutions connecting 0 with β .

We choose α = −1, γ = 0.01, m = 8, and a = 0.2. Then β = 2.61100, and
c∗ = 3.27956. Figure 1 shows a solution of (1) for this set of parameter values. The
minimal domain size for (16) with g given by (21) is �∗ = π

√
d/ ln(m/aeα). It is

1.91586 for d = 1, α = −1, m = 8, a = 0.2. Figure 2 shows a solution of (16) for
this set of parameters.

We now choose g(N) to be the Ricker function, i.e.,

g(N) = Ner−N. (22)

Clearly, g′(0) = er and g(N) ≤ g′(0)N for all N ≥ 0. In this case, (6) becomes r +
α > 0. This condition ensures that model (1) has a positive equilibrium. Theorem 2.2
shows that model (1) has a spreading speed c∗ = 2

√
d(r + α) that is also the slowest

speed of positive traveling wave solutions with value 0 at ∞. Figures 3 and 4 show
two particular solutions for (1) for two different sets of parameters.

It appears that the tail of the wave in Fig. 3 approaches an equilibrium value, while
the tail of the wave in Fig. 4 is oscillatory.

The minimal domain size for (16) with g given by (22) is �∗ = π
√

d/(r + α). If
we choose d = 1, α = −1, γ = 0.04, R = 2.5 as in Fig. 3, the minimal domain size
is 2.56380. Our simulation work shows that the simulation figure in this case for a
domain with length greater than this number is qualitatively similar to Fig. 2. For
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Fig. 2 A numerical approximation to the graph of Nn(x) for (16) with d = 1, α = −1, γ = 0.01, and g

given by (21) where m = 8 and a = 0.2. The domain is [−1,1]. N0(x) is chosen to be a cosine function
that is positive in (−1,1) and becomes 0 at −1 and 1. The left figure depicts the solution; and the right
figure shows the contour plots of the solution

Fig. 3 A numerical approximation to the graph of Nn(x) with d = 1, α = −1, γ = 0.04, and g given by
(22) where r = 2.5, giving c∗ = 2.44949. N0(x) is chosen to be a cosine function with a compact support
from −5 to 5. The left figure depicts the spread of the solution in two directions; and the right figure shows
the contour plots of the wave front

d = 1, α = −1, γ = 0.04, R = 4.5, the minimal domain size is 1.67840. Figure 5
shows a solution of (16) for this set of parameters.

We note in Fig. 2 and Fig. 5 that the spatial patterns of solutions are different.
Particularly, in Fig. 2 the solution approaches an equilibrium distribution that has
only one maximum value, while in Fig. 5 the solution approaches an equilibrium
distribution that has two maximum values.
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Fig. 4 A numerical approximation to the graph of Nn(x) with d = 1, α = −1, γ = 0.04, and g given by
(22) where r = 4.5 , giving c∗ = 3.74166. N0(x) is chosen to be a cosine function with a compact support
from −5 to 5. The left figure depicts the spread of the solution in two directions; and the right figure shows
the contour plots of the wave front

Fig. 5 A numerical approximation to the graph of Nn(x) for (16) with domain [−1.5,1.5], d = 1,
α = −1, γ = 0.04, and g given by (22) with r = 4.5, giving �∗ = 1.67925. N0(x) is chosen to be a
cosine function that becomes 0 at 1.5 and −1.5. The right figure depicts the solution; and the left figure
shows the contour plots of the solution

5 Discussion

We studied impulsive reaction–diffusion models with a reproductive stage and a
dispersal stage in bounded and unbounded domains. In a reproductive stage, pulse
growth occurs, and in a dispersal stage dispersal and mortality take place. The mod-
els can be also used to describe a continuously growing and dispersing population
with pulse harvesting and a population with individuals immobile during the win-
ter. In the case where the spatial domain is unbounded, we provided a formula for
the spreading speed in terms of the linearization parameters including the pulse re-
cruitment rate of the population about zero, the diffusion coefficient, and the death
rate of the population about zero in a dispersal stage. We showed that the spreading
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speed can be characterized as the slowest speed of a class of traveling wave solutions.
When the spatial domain is bounded with a lethal exterior, we found a formula for
the minimal domain size in terms of the model parameters used for computing the
spreading speed. Our numerical simulations suggest that different spatial patterns of
solutions can be obtained even for the same (nonmonotone) growth function with
different parameters.

The model formulations of the present investigation could be generalized in sev-
eral biologically meaningful ways. It was assumed in the models that all individuals
have the same growth and mortality rates, as well as the same dispersal rate. These
rates, however, likely depend on the age of individuals in the population, with age-
structured reproductive and dispersal stages. While the single species model were
considered here, more general models could include two species and competition in-
teraction between them. Impulsive reaction–diffusion equations have been introduced
(e.g., Al-arydah and Smith 2011) to investigate population dynamics in some other
contexts in biology. It is of interest to extend the techniques developed in this paper
to other kinds of impulsive reaction–diffusion equations.

We studied the dynamics of a population at the beginning of a reproductive stage
within a year. One can of course choose a different point in the life cycle of the pop-
ulation to investigate. The analyzes provided in this paper still work to show that
similar results can be obtained if a different life cycle point is chosen. The present
paper only treated one-dimension habitats. However, it is known (Weinberger 1982)
how to use the one-dimensional results to determine the spreading speeds and travel-
ing waves in higher-dimensional habitats by looking at one direction at a time. In the
case that the domain in (16) is two or three-dimensional, one might use the framework
developed in this paper to determine the minimal domain size.
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Appendix

In this section we provide a justification for nonlinearity of g and the proofs for
Theorems 2.1, 2.2 and 3.1.

6.1 Justification of Nonlinearity of g

We consider a population with the following properties: (i) an individual needs a unit
of resource to produce offspring; and (ii) each resource unit occupies area b and the
mean density of individuals in space is N . Suppose that the population is randomly
distributed in space via a Poisson process and individuals are sessile in productive
stage. Then the number of individuals in each unit is a Poisson RV with mean Nb.
The probability of k individuals in a unit is

(Nb)ke−Nb/k!.
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Suppose that there is contest competition. If there is more than one individual per
unit, then they compete so that only one reproduces. Then the expected number of
offspring arising from the unit would be R times the probability that the unit is occu-
pied, where R is the number offspring per adult:

R
(
1 − e−bN

)
.

This is the Skellam function (Skellam 1951), which is qualitatively similar to the
Beverton–Holt function (21).

We next assume that there is scramble competition. If two or more individuals
chose the same unit, then they would each get a smaller amount of resource, but not
enough to reproduce, and so none would reproduce. In this case, the expected number
of offspring arising from a unit would be R time the probability that there was one
individual occupying the location:

RbNe−bN .

Choosing r = log(Rb) yields the Ricker function (22).
The first model would apply to animals such as birds which have contest compe-

tition for nesting sites, and the second to animals such as salmon, where they spawn
in river beds and can spawn on top of a previous site.

6.2 Proof of Theorem 2.1

Let Q denote the time one solution operator of the reaction–diffusion equation in
(1). It is well known that Q is continuous and compact in the topology of uniform
convergence on every bounded interval, and Q is monotone in the sense Q[u](x) ≥
Q[v](x) if u(x) ≥ v(x) ≥ 0. Nn(x) satisfies the abstract recursion

Nn+1(x) = Q
[
g(Nn)

]
(x). (23)

Consider the initial value problem

∂p

∂t
= d

∂p

∂x2
+ αp − γp2, −∞ < x < ∞,

p(x,0) = ρN(x).

(24)

Then v := p/ρ where 0 < ρ ≤ 1 satisfies

∂v

∂t
= d

∂v

∂x2
+ αv − γρv2, −∞ < x < ∞,

v(x,0) = N(x).

(25)

We introduce the system

∂u

∂t
= d

∂u

∂x2
+ αu − γ u2, −∞ < x < ∞,

u(x,0) = N(x).

(26)

Since 0 < ρ ≤ 1, the comparison theorem shows that the solution v(x, t) of (25) and
the solution u(x, t) of (26) satisfy v(x, t) ≥ u(x, t) for t > 0, and particularly,

v(x,1) ≥ u(x,1),
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so that p(x,1) ≥ ρu(x,1) where p(x, t) is the solution of (24). This shows that
Q[ρN ](x) ≥ ρQ[N ](x). On the other hand, Hypothesis 2.1 ii implies that for
0 < ρ < 1, g(ρN) ≥ ρg(N) for N ≥ 0. It follows that for 0 < ρ ≤ 1,

Q
[
g(ρN)

]
(x) ≥ ρQ

[
g(N)

]
(x). (27)

We use M[N ] to denote the linearization of Q[g(N)] about 0. M is the solution
operator of the problem

∂u

∂t
= ∂u

∂x2
+ αu, −∞ < x < ∞,

u(x,0) = g′(0)Nn(x),

Nn+1(x) = u(x,1).

(28)

Solving the linear problem (28) explicitly, we obtain that

Nn+1(x) = M[Nn](x) :=
∫ +∞

−∞
k(x − y)g′(0)eαNn(y) dy

where k(x) is the normal distribution given by

k(x) = 1√
2πd

e− x2
4d .

The moment generating function of k(x) is

K(x) =
∫ ∞

−∞
eμxk(x) dx = edμ2

,

so that

inf
μ>0

ln
[
g′(0)eαK(μ)

]
/μ = inf

μ>0
(1/μ)

[
ln

(
g′(0)eα

) + dμ2] = 2
√

d ln
(
g′(0)eα

)
. (29)

The condition g(N) ≤ g′(0)N and the fact that αu − γ u2 ≤ αu, as well as the
comparison theorem show that

Q
[
g(N)

]
(x) ≤ M[N ](x).

On the other hand, differentiability of g at 0 and Lemma 4.1 in Weinberger et al.
(2002) show that there exists a family M(κ) of linear order preserving operators with
the properties that for every sufficiently large positive integer κ there is a constant
ω > 0 such that Q[g(v)](x) ≥ M(κ)[v](x) for 0 ≤ v(x) ≤ ω and that for every μ > 0,
B

(κ)
μ defined by B(κ)α := M(κ)[e−μxα]|x=0 for all α > 0 converge to g′(0)eαK(μ)

as κ → ∞. It follows from Theorems 6.1–6.5 in Weinberger (1982) that system (23)
has the spreading speed c∗ given by (29) satisfying (9) and (10).

The second part of the theorem follows immediately from Theorem 6.6 in Wein-
berger (1982). The proof is complete.

6.3 Proof of Theorem 2.2

A comparison argument that makes use of property (15), similar to the proof of
Proposition 3.1 in Li et al. (2009), shows that c∗ is the spreading speed of (1). We
shall omit the details here.
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The nonexistence of traveling wave solutions with speeds c < c∗ is similar to the
last part of the proof of Theorem 4.1 in Li et al. (2009) and is omitted here.

We now establish the existence of traveling wave solutions with speeds c ≥ c∗.
Hypothesis 2.1 ii and the definition of g+ imply that

g+(ρN) ≥ ρg+(N)

so that (27) with g replaced by g+ holds, i.e.,

Q
[
g+(ρN)

]
(x) ≥ ρQ

[
g+(N)

]
(x).

The results about the traveling wave solutions obtained in Sect. 2.2 show that for
c ≥ c∗, system (13) has a nonincreasing traveling wave solution Nn(x) = w+(x −nc)

with w+(−∞) = β+ and w+(∞) = 0. We now choose a positive number 0 < ρ < 1
so small such that ρw+(x) ≤ σ0 and g(ρw+(x)) ≤ σ0. It follows that for N(x) ≥
ρw+(x):

Q
[
g(N)

]
(x) ≥ Q

[
g−(

ρw+)]
(x) = Q

[
g+(

ρw+)]
(x)

≥ ρQ
[
g+(

w+)]
(x) = ρw+(x − c).

On the other hand, for 0 ≤ N(x) ≤ w+(x),

Q
[
g(N)

]
(x) ≤ Q

[
g+(N)

]
(x) ≤ Q

[
g
(
w+)]

(x) = w+(x − c).

We therefore have that the set

Ec = {
u(x) : u(x) is continuous, ρw+(x) ≤ u(x) ≤ w+(x)

}

is an invariant set for the operator Tc[Q[g(·)]] with Tc[u](x) = u(x + c). Since g is
continuous and Q is compact, the composition operator Q[g(·)] is compact. It fol-
lows that the image of Ec under Tc[Q[g(·)]] is compact in the topology of uniform
convergence on every bounded interval. Because the set of bounded vector-valued
functions with this topology is a locally convex topological vector space, the exis-
tence of a solution w of the equation Tc[Q[g(w)]] = w follows from what Rudin
(1991) calls the Schauder–Tychonoff fixed point theorem. Clearly, w(∞) = 0. An ar-
gument similar to what in the second paragraph on p. 332 in the proof of Theorem 4.1
in Li et al. (2009) shows lim infx→∞ w(x) ≥ β−. The proof is complete.

6.4 Proof of Theorem 3.1

Consider the eigenvalue problem

d
d2u

∂x2
+ αu = λu, 0 < x < �,

u(0, t) = u(�, t) = 0.

It is easily seen that

λ1 = α − dπ2/�2

is the principal eigenvalue and a corresponding eigenfunction is

φ(x) = sin
π

�
.
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Let

Ñn(x) = κ
(
g′(0)eλ1

)n
φ(x), n = 0,1, . . .

where κ is a positive constant. Ñn(x) is a solution of the linear problem

∂u

∂t
= d

∂2u

∂x2
+ αu, 0 < x < �,

u(0, t) = u(�, t) = 0,

u(x,0) = g′(0)Ñn(x),

Ñn+1(x) = u(x,1).

(30)

In fact, u(t, x) = κg′(0)eλ1t φ(x) satisfies the linear reaction–diffusion equation
and the boundary condition in (30), as well as the initial condition u(x,0) =
g′(0)Ñ0(x) = κg′(0)φ(x). It follows that

u(x,1) = κg′(0)eλ1φ(x)

which is Ñ1(x). Induction shows that Ñn(x) is a solution of (30).
For any given initial value function u(x,0) = N0(x) in (16), we can choose κ

sufficiently large such that N0(x) ≤ Ñ0(x). Since the reaction term in Eq. (16) is no
greater than that in (30) for nonnegative u, the comparison theorem and induction
show that the solution Nn(x) of (16) has the property that Nn(x) ≤ Ñn(x) for all
n ≥ 0. If g′(0)eλ1 < 1, then limn→∞ Ñn(x) = 0 for all x, and thus

lim
n→∞Nn(x) = 0.

for all x. The proof of the statement (i) is complete.

We now assume g′(0)eλ1 > 1 or equivalently � > π
√

d
lng′(0)+α

and prove the

statement (ii). We choose λ̂ < λ1 and ρ1 < g′(0) such that ρ1e
λ̂ > 1. Let v(x, t) =

ερ1e
λ̂tφ(x). It follows from Hypothesis 3.1 that for sufficiently small ε > 0 and

0 < t ≤ 1

g
(
v(x, t)

) ≥ ρ1v(x, t) + v(x, t)
{(

g′(0) − ρ1
) − Dεν−1[ρ1e

λ̂tφ(x)
]ν−1}

≥ ρ1v(x, t).

On the other hand, for 0 < t ≤ 1

∂v

∂t
−

[
d

∂2v

∂x2
+ αv − γ v2

]

= ερ1e
λ̂t

[
λ̂φ − dφ′′ − αφ

] + ε2γ (ρ1)
2(eλ̂tφ

)2

= ερ1eλ̂t
[
λ1φ − dφ′′ − αφ

] + ερ1e
λ̂t (λ̂ − λ1) + ε2γ (ρ1)

2(eλ̂tφ2)

= ερ1e
λ̂t (λ̂ − λ1)e

λ̂t + ε2γ (ρ1)
2(eλ̂tφ2)

= ε
[
λ̂ − λ1 + εγρ1e

λ̂tφ
]
ρ1e

λ̂tφ

< 0
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for sufficiently small ε. This shows that for 0 < t ≤ 1, v(x, t) is a lower solution of

∂u

∂t
= d

∂2u

∂x2
+ αu − γ u2,

u(0, t) = u(�, t) = 0.

We use S to denote the time 1 solution map of

∂u

∂t
= d

∂u

∂x2
+ αu − γ u2,

u(0, t) = u(�, t) = 0,

u(x,0) = u0(x).

Then u(x,1) = S[u0](x). A comparison argument shows that S is a monotone oper-
ator in the sense that S[u1](x) ≥ S[u2](x) whenever u1(x) ≥ u2(x) ≥ 0. Using S, we
find that the solution Nn(x) of (16) satisfies the abstract recursion

Nn+1(x) = S
[
g(Nn)

]
(x).

Let N0(x) = εφ(x) and Nn+1(x) = S[g(Nn)](x). The properties of v(x, t) show that
for sufficiently small ε

S
[
g(N0)

]
(x) ≥ S[ρ1N0](x) ≥ v(x,1) ≥ N0(x).

Induction shows that Nn+1(x) ≥ Nn(x) for all n ≥ 0.
On the other hand, for sufficiently small ε, the equilibrium value β > εφ(x) =

N0(x) is a super solution of (16). It follows that

β ≥ Nn+1(x) ≥ Nn(x)

for all n ≥ 0. We therefore have that Nn(x) increases to a limit function N(x),
which is the minimum positive equilibrium solution of (16). If N0(x) in (16) is ini-
tially nonnegative and is positive on an open subinterval of (0, �), then the strong
maximum principle shows that N1(x) > 0 for 0 < x < �. Choose ε sufficiently
small so that N0(x) = εφ(x) < N1(x). Then the comparison theorem shows that
Nn+1(x) ≤ Nn(x) for all n ≥ 0, and thus lim infn→∞ Nn(x) ≥ N(x). The proof is
complete.
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